
 

 

Investigation on the mechanical behavior of planetary roller 

screw with the effects of external loads and machining errors 
Xing Du, Bingkui Chen*, Zhengding Zheng 

The State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400030, China 

 

Abstract:  

Planetary roller screws are the key mechanical components used in linear motion 

and could be subjected to radial and axial loads in application. However, the effect of 

radial force on load distribution and fatigue life has not been considered in previous 

studies. This paper exactly establishes the connection between planetary roller screw 

internal deformation and external load, the load distribution models are based on 

equivalent contact deformation and contact force, and amended by considering radial 

loads, machining errors and corrections under tension-compression or tension-tension 

working state. Then, the numerical calculations point out the influences of 

configurations, external forces, machining accuracy and corrections on load capacity, 

deformation coefficient and fatigue life of planetary roller screw. The results reveal that 

when the planetary roller screw is applied with radial force, the contact loads reduces 

periodically with the growth of thread number. Moreover, with the increase of 

machining errors, the deformation coefficients and contact forces change dramatically 

at a certain load. After proper modification, the fatigue life and the uniformity of load 

capacity are remarkably improved. The proposed approach and analytical results show 

load characteristics of planetary roller screw and thereby proffer the fundamental 

insights needed to guide the design, installation and use of planetary roller screw.  

Keywords: planetary roller screw; load capacity; deformation coefficient; fatigue life; 

machining error  

 

1. Introduction 

Planetary roller screw mechanisms (PRSM) are considered as the key component 

of linear motion in engineering applications. With the ever-increasing development of 

electric aircrafts, automobile, robots, and other fields, the heavy load, high accuracy, 

high power-to-weight ratio, extreme temperature and long lifetime are strongly 

demanding for the PRSM. These requirements lead to greatly large contact stress, high 

sliding velocity, and instantaneous temperature in the PRSM, which are easy to surpass 

the endurance limit. In such situations, the accuracy, stability, durability and reliability 

of the PRSM will be a significant challenge. Therefore, it is extremely important to 

accurately calculate the load distribution and predict fatigue life of the PRSM. 

Over the past decades, many excellent works have been done in the literature, 

which mainly target the geometry, kinematics, load capacity, friction, lubrication, 

dynamics, thermal and fatigue life [1-9]. Sandu et al. [1], [2] proposed an efficient 

method for analyzing thread geometry and predicting contact ellipses. Jones and 

Velinsky [3] analyzed the accurate kinematics of the roller migration because of pitch 

deviation. Abevi et al. [4] presented a fundamental approach considering the axial 

resilience and bending flexibility of the roller, and predicted the load capacity and static 

stiffness of the roller in the different configurations. Ma et al. [5] researched the contact 

characteristic with the tangential friction and normal pressure, and derived the relative 

velocities at the screw-roller and roller-nut interfaces. The results revealed that sliding 



 

 

contact and rolling contact were the main contact methods for screw-roller and roller-

nut interface, respectively. Xie et al. [6] proposed the mixed-lubrication model, and 

found that the speed and surface roughness had significant influences on film thickness, 

friction coefficient and contact-area ratio. Jones et al. [7] presented the accurate 

dynamic equations with viscous friction based on Lagrange’s Method, and showed that 

the dependence of slip velocity on the lead and contact angle of the screw. Qiao et al. 

[8] analyzed the thermal characteristics of the PRSM under mutative working 

conditions, and found that the speed, grease and external load played significant roles 

in temperature rise level and thermal failure. Lemor [9] proposed a basic method to 

predict the fatigue life of the PRSM. 

For the investigation of the mechanical behavior of the PRSM, how to exactly 

establish the connection between the internal deformation and the external load is a 

significant problem. Yang et al. [10] analyzed the load distribution law based on Hertz 

theory. Ma et al. [11] established a load capacity model with errors, and revealed that 

the load distribution was remarkably affected by the axial force, contact angle, helix 

angle, etc. Zhang et al. [12], [13] found the load distribution was greatly sensitive to 

pitch deviation and proposed an improvement method to make load distribution 

uniform. Abevi et al. [14] presented the contact deformations under different working 

state by numerical analysis, and founded that the machining errors and position errors 

had great influences on the number of effective contacts. 

 All of the above studies have helped researchers have a better understanding of 

the mechanical behavior over threads of the PRSM. However, the mechanical behavior 

of PRSM is affected by many factors, such as radial loads, machining errors, corrections 

and so on. Existing models barely have an overall consideration of these factors. Their 

works mentioned above aimed at analyzing the load distribution and fatigue life only 

subjected to axial loads. Recently, many scholars paid more attention to the ball screw 

considering radial loads, which was partially similar with the PRSM. Zhen and An [15] 

established the analytical model of ball screw to investigate the contact stress and 

fatigue life, and showed that the sensitivity of the load distribution and fatigue life with 

the dimension errors of balls. Zhao et al. [16] analyzed the influence of turning torque 

and geometric errors on the ball screw performance, and revealed that the different 

effects of ball’s accuracy and axial load on the ball screw of load distribution, position 

precision and fatigue life. However, the contact deformation of the PRSM has not been 

adequately performed by the method of ball screw, mainly because of the accumulative 

axial deformations of threads. 

In this study, an explicit mechanical model readily and rapidly available to analyze 

the load distribution and predict the fatigue life of a PRSM is built with respect to 

external loads (axial load and radial load), machining errors, configurations and 

corrections. Firstly, the axial force of each roller is estimated by the equivalent contact 

load and deformation. Then, the deformation compatibility equation is amended by 

considering external loads and machining errors under the tension-compression (T-C) 

or tension-tension (T-T) working state. Further, the load capacity, deformation 

coefficient and fatigue life are analyzed due to the effects of axial loads, radial loads 

and machining errors. Finally, based on load coefficient of the PRSM, the corrections 



 

 

of roller are presented in order to improve the uniformity of load capacity and increase 

lifetime.   

 

2. Mechanical model  
 

2.1. Initial assumptions 

Fig. 1 shows a scheme of the PRSM. For the purpose to obtain a practical 

analytical model and reduce ambiguity, the necessary hypotheses should be made:  

1) All contact deformations are considered as elastic deformations, which only occur 

in the contact area and conform to the Hertz contact theory; 

2) Centrifugal force and gyroscopic moment are negligible due to the low rotation 

speed of the screw; 

3) The top roller is 1#, and the sequence number increases clockwise; 

4) The separation angle of any roller i# with respect to 1# roller is φi, which could be 

calculated by: 
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where n is the total number of rollers. 

 

2.2. Contact load and deformation analysis 

 

2.2.1. Equivalent contact load and deformation 
As shown in Fig. 2, when the PRSM is subjected to radial load, the radial contact 

deformation at different position angle is generated. Fig. 2 shows the solid circle 

represents the initial position of the nut, and the dotted circle denotes the new position 

of the nut under external loads. According to Ref.[6], [11], for the purpose to obtain 

the load capacity, the axial load of each roller is given as an input parameter and the 

contact deformations and contact forces are solved. However, when the PRSM is 

subjected to both axial and radial loads, the axial load of each roller is not the same. 

Furthermore, it’s also extremely difficult to calculate the normal contact deformations 

of all threads in accordance with geometry relationship. Hence, in order to get the axial 

load of each roller, it is firstly assumed that the axial deformation δa(i,j) of all threads 

are identical, and the radial deformation of i# roller can be described by[15]: 

 
( , ) cosr i j r i     (2) 

i  is the position angle of i# roller and can be written by: 

 i i      (3) 

by varying θ, the radial deformation of any thread can be known. 

Therefore, the equivalent contact deformation ( , )

E

n i j of screw-roller and nut-roller 



 

 

interface in the normal direction can be calculated by: 

 
( , ) ( , ) ( , )sin / cos cos cosE
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Where β is the contact angle; λ is the helix angle of roller. 

And then, the equivalent contact load ( , )

E

n i jQ   in the normal direction can be 

obtained according to the load-deformation relationship of the PRSM: 
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where the index γ = 1 denotes that the thread couple are contacting, while γ = 0 

represents that the thread couple are not in contact. The symbol K is total contact 

stiffness coefficient in the screw-roller and nut-roller interface, which depends on the 

design parameters of the PRSM. It can be determined by: 
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where Krs and Krn are the contact stiffness of screw-roller interface and nut-roller 

interface, respectively, and which are expressed as[6]: 
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where Kes and Ken are the complete elliptic integral of the first kind of screw-roller and 

roller-nut interface, respectively; mas and man are the major semi-axis coefficients of the 

contact ellipse of the screw-roller and roller-nut interface, respectively; E represents the 

effective Young moduli; ∑ ρ
s
  and ∑ ρ

n
  are the curvature sum of screw-roller and 

roller-nut interface, respectively. 

According to Eqs. (1) ~ (7), the equilibrium equations of equivalent contact load 

of the PRSM with axial load and radial load are obtained by: 

 

( , )

1 1

( , )

1 1

sin cos 0

cos cos 0

n t
E

r n i j

i j

n t
E

a n i j i

i j

F Q

F Q

 

 

 

 


 



  






  (8) 

where Fr and Fa are the radial load and axial load on the PRSM, respectively; t is the 

total thread number of any roller.  

Hence, the axial contact load of any roller can be calculated by: 
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Fig. 1. Schematic diagram of PRSM 
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Fig. 3. The diagram of axial deformation with errors 

2.2.2. Theoretical contact load and deformation in T-C 
According to the equilibrium condition and Fig. 3(a), the axial load under the T-C 

working state can be calculated by: 
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Where
( , )S i jF and

( , )N i jF are the axial force of the screw and nut, respectively. 
( , )n i jQ is 



 

 

the normal contact force, which complies with the following conditions: 
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And then, the axial deformation considering the machining errors in the screw-

roller interface at the contact points m and n can be expressed by: 
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where
( , )S i j and

( , 1)S i j 
are the Hertz contact deformation of jth and j-1th thread in screw-

roller interface, respectively.
( , )S i j and

( , 1)S i j 
are the axial machining errors of jth and j-

1th thread in the screw-roller interface, respectively. Similarly, that of the nut-roller 

interface can be written as: 

 ( , ) ( , 1) ( , ) ( , 1) ( , )

1
( ) ( )

sin cos
N i j g h N i j N i j N i j N i j      

 
         (13) 

where 
( , )N i j  and 

( , 1)N i j 
 are the Hertz contact deformation of jth and j-1th thread in 

nut-roller interface, respectively. 
( , )N i j  and 

( , 1)N i j 
 are the axial machining errors of 

jth and j-1th thread in the roller-nut interface, respectively 

Combined with Eqs. (12) and (13), the total axial deformation with machining 

errors can be calculated by: 
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where 
( , )n i j   and 

( , 1)n i j 
  denote the total Hertz contact deformation of jth and j-1th 

thread of i# roller, respectively. 
( , )n i j and 

( , 1)n i j   represent the total axial machining 

errors of jth and j-1th thread of i# roller, respectively.  
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Furthermore, the axial deformation in the screw-roller and the nut-roller interface 

can also be calculated by: 
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where p is the pitch; AS and AN are the cross-sectional areas of screw and nut, 

respectively; RS and RN are the nominal radius of screw and nut, respectively. RoN is the 

external radius of nut.  



 

 

According to Eq. (16), the total axial deformation can also be calculated by: 
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Based on Eqs. (14) and (17), the recursive equation with machining errors can be 

obtained by: 
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2.2.3. Theoretical contact load and deformation in T-T 
According to the equilibrium condition and Fig. 3(b), the axial load under T-T 

working state can be revised by: 
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where Qn(i,j) complies with Eq. (11). 

According to Fig. 3(b), the axial deformation in the screw-roller interface can also 

be expressed by Eq. (12), while that of the nut-roller interface can be amended as: 
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Combined with Eqs. (12) and (20), the total axial deformation with machining 

errors can be calculated by: 

 ( , ) ( , ) ( , ) ( , 1) ( , ) ( , 1) ( , )

1
( ) ( )

sin cos
i j S i j N i j n i j n i j n i j n i j      

 
         (21) 

With Eqs. (16) and (19), the total axial deformation can also be calculated by: 
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According to Eqs. (21) and (22), the recursive equation with errors in T-T can be 

obtained as: 
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2.3. Deformation coefficient and load coefficient 

2.3.1 Deformation coefficient 
Comparing with the contact loads without errors, the contact loads with errors can 

be either larger or smaller. The contact deformations also are changed with the variation 

of the machining errors. Deformation errors are difficult to compensate due to changing 

deformations[16]. Hence, in order to evaluate contact deformation of the PRSM with 

machining errors, the deformation coefficient is introduced and expressed as: 
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where 
0

( , )n i j   and 
( , )n i j   denote the normal contact deformation without error and 

with error, respectively.  

If Eq. (5) is substituted into Eq. (24), 
( , )i j  is represented as: 
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where 
0

( , )n i jQ  and 
( , )n i jQ  are the normal contact load without errors and with errors, 

respectively. 



 

 

 

Calculate the radial contact deformation δr(i,j) and 

the equivalent normal contact deformation 

Calculate the axial load Fai

Use Eqs.(11)~(18) to calculate  

normal contact load  Qn(i,j)  

Input structural parameters and load condition

Assume the initial value and convergence precision 

Output maximum contact stress σmax and fatigue life L 

Start

End

Yes

No

Yes

 

( , )

1 1

( , )

1 1

sin cos

cos cos

n t
E

a n i j

i j

n t
E

r n i j j

i j

F Q acc

F Q acc

 

 

 

 

 

 





 

3/2

( , ) ( , )( / ( ))E E

n i j n i j rs rnQ K K   

( , ) 0E

n i j   ( , ) 0E

n i jQ   

T-C 

or 

T-T

Use Eqs.(19)~(23) to calculate  

normal contact load  Qn(i,j)  

No

T-T

T-C

( , )

E

n i j  

Equivalent contact 

load and deformation

Theoretical contact load 

 

Fig. 4. Calculation flow of static model 

Furthermore, the range value νi, the difference between the maximum and the 

minimum deformation coefficient in i# roller, is introduced to present the fluctuation of 

deformation coefficient, which is calculated by: 
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2.3.2 load coefficient 
In order to intuitively investigate the load capacity, the load coefficient κ, defined 

as the ratio of the contact load to the minimum contact load and expressed by Eq. (27), 

is introduced to evaluate the variation of contact force of the PRSM. The load 



 

 

coefficient varies with the contact load variation. Thus, the coefficient directly reveals 

the nonuniformity of load capacity. 
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2.4. Fatigue life analysis 

Fatigue life is one of the most important performance of the PRSM in practical 

applications. In this part, the fatigue life of the PRSM is discussed based on the previous 

analysis. According to the stress-life approach, the lifetime of the PRSM is determined 

by contact stress and rotate speed. Commonly, the basis for formulating fatigue life of 

the PRSM is the maximum contact stress, which can be obtained by: 
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where Qnmax denotes the maximum contact force in normal direction, the major semi-

axis a and minor semi-axis b of the contact ellipse can be calculated by[17]: 
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where mb is expressed as: 
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And then, the fatigue curve of material can be written as: 
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where N0 is the circulation base of the material. kσ represents the stress ratio between 

contact fatigue limit σ0 and maximum contact stress σmax and is written by: 
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Furthermore, the absolute rotating speed of the roller around the screw can be 

expressed as[18]: 
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where km denotes the ratio between screw nominal diameter dS and roller nominal 

diameter dR and is expressed by: 
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Therefore, the fatigue life in hour is estimated by[15]: 

 
( 1)

60 ( 2)

H m

s m m

N k
L

k k





  (35) 

Based on the above analysis, the entire calculation process for the fatigue life and 

contact forces of the planetary roller screw is shown in Fig. 4. 

 

3. Numerical examples and discussion  
In order to verify the validity and accuracy of the proposed model, some numerical 

examples are presented by the specific parameters. These examples cover contact loads, 

fatigue life and deformation coefficients considering the effects of configurations, 

external loads, machining errors and corrections. Table 1 and Table 2 show the detail 

parameters of the PRSM. In this example, there are 24 threads in a roller and 192 threads 

in all rollers. 

Table 1. 

Design parameters of the PRSM 

 Roller Screw Nut 

Parameters (Unit) Symbol Values Symbol Values Symbol Values 

Nominal radius (mm) Rr 4 Rs 12 Rn 20 

Contact angle (◦) β 45 β 45 β 45 

Starts Sr 1 Ss 5 Sn 5 

Helix angle (°) λr 4.55 λS 1.52 λn 0.91 

Pitch (mm) Pr 2 Ps 2 Pn 2 

Number nr 8 ns 1 nn 1 

External radius (mm) / / / / Ron 27.5 

Table 2. 

Material parameters of the PRSM  

Parameters (Unit) Symbols Values Parameters (Unit) Symbols Values 

Young moduli (Pa)  E 2.12×1011 Poisson’s ratio μ 0.29 

Circulation base  N0 2.5×108 hardness of parts HRC 62 

contact fatigue limit 

(N/mm2) 

σ0 2450 point contact index 

of the steel 

m 6 

 

3.1. Effects of external loads 

Fig. 5 depicts the load capacity under the T-T and T-C working state when 

machining errors are zero, and the PRSM is assumed that under the next two conditions: 

1) the axial load Fa = 30kN and the radial load Fr = 3kN; 2) the axial load Fa = 30kN 

and the radial load Fr = 0kN. In Fig. 5, the load capacity without radial load is 

represented by the dotted line, while that with radial load is denoted by the full line. 

Square, circle, upper triangle, lower triangle and diamond markers are the load capacity 

of 1#, 2# and 8#, 3# and 7#, 4# and 6#, 5# roller with radial load, respectively.  

As shown in Fig. 5(a), it can be observed that the load capacity curves of all rollers 



 

 

are superimposed when the PRSM is not subjected to radial force. With the increase of 

the thread number, the contact loads monotonically decrease, but the slopes of the 

curves increase. This is notably consistent with the observation from Ref. [13]. 

Nevertheless, the load distribution curves vary when the PRSM is applied with radial 

force. In a lead, the contact forces of the 8 pairs of thread contact couple are no longer 

the same, but are either larger or smaller. Moreover, for the position angle from 0° to 

180°, the contact loads from 1# roller to 5# roller gradually decrease with the decrease 

of radial load. For the position angle from 180° to 360°, the contact loads from 5# roller 

to 1# roller gradually increase with the growth of radial load. This is mainly due to the 

fact that increasing or decreasing radial load of rollers makes the Hertz contact 

deformation larger or smaller at different position angle, which results in the variation 

of contact loads. Moreover, the load capacity curves of 3# and 7# rollers with radial 

force are the same as that of any roller without radial force, and they may also be 

considered as the mean of all rollers with radial force. And then, Fig. 5(b) shows the 

load capacity under the T-T state. Comparing Fig. 5(b) with Fig. 5(a), the contact forces 

do not always decrease with the growth of thread number, but first decrease and then 

increase. This phenomenon occurs mainly because under the T-T state, the axial load is 

applied near the first thread of roller in screw-roller side and the last thread in the roller-

nut side, so that the load distribution can become slightly uniform. 

Fig. 6 shows the contact loads of 1# roller in the cycling process. For the T-C and 

T-T case in Fig. 6, it can be notably found that under the same thread, the contact loads 

of the PRSM without radial force don’t change in the cycling process while those vary 

periodically under radial load. The changing trend of contact force is similar with the 

ball screw of Ref.[15]. Moreover, the contact forces under the same position angle 

reduce obviously with the increase of thread number in Fig. 6(a) and Fig. 6(b), while 

that in Fig. 6(c) and Fig. 6(d) decrease at first and then increase. That is well confirmed 

by Fig. 5. Because the changing tendency of load capacity is similar with each roller, 

this part takes 1# roller as an example. 

 

3.1.1 Effects of the axial loads 
Fig. 7 represents the variation of load capacity against thread number under the 

same radial load and the different axial load. As the T-C case shown in Fig. 7(a), the 

PRSM with different axial load shows the different load distribution curves. The contact 

forces over threads are undoubtedly increased with the growth of axial loads. 

Meanwhile, with the increase of thread number, the contact force reduces periodically. 

And then, Fig. 7(b) shows the load capacity for the T-T case. We can find that the peak 

value of contact force and the downward trend of the load distribution curve under the 

T-T state is smaller than Fig. 7(a) under the same external load. Furthermore, the contact 

forces decrease at first and then increase periodically. Thus, it can be concluded that the 

load capacity becomes more even under the T-T state, and the uniformity of that cuts 

down with increase of axial load. 
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Fig. 5. Load capacity in different configurations 

  

(a) No radial load under the T-C state  (b) With radial loads under the T-C state 

  

(c) No radial load under the T-T state (d) With radial loads under the T-T state 

Fig. 6. Load capacity of 1# roller in cycling in different configurations and external loads.  
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Fig. 7. Load distribution in different axial loads and configurations.  
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Fig. 8. Fatigue life in different axial loads, rotating speeds and configurations  

Fig. 8 shows the fatigue life against the axial load under the different rotate speed 

and the same radial load. Fig. 8(a) shows the fatigue life under the T-C state. As the 

rotate speed is 100rpm, with the increase of the axial load, the fatigue life is reduced 

rapidly first and then slowly. However, when the rotate speed is higher than 100rpm, 

the fatigue life sharply decreases under the same external loads and slowly decreases 

with the increase of axial load. In addition, when the axial load is bigger than 30kN, the 

fatigue life has little variation against the rotate speed. Therefore, the fatigue life under 

the low axial load is more sensitive to rotate speed than that under the large axial load. 

This can also be obtained by Eq. (35). And then, the fatigue life under the T-T state is 

shown in Fig. 8(b), and the result is similar with Fig. 8(a). The discrepancy is that the 

lifetime slightly increases. This is mainly because that the maximum contact load is 

smaller under the T-T state than that under the T-C state. This can be confirmed by Fig. 

7. Hence, the fatigue life is susceptible to rotate speed under the low axial load. 

 

3.1.2 Effects of the radial loads 
Fig. 9 shows the load capacity against the thread number under the different radial 

load and the same axial load. As shown in Fig. 9, the influence of thread number on the 

load capacity is similar with that of Fig. 7 when the axial load is 20kN. Moreover, it 



 

 

can be evidently observed that with larger radial load, the load capacity curves have 

more severe fluctuation under the same axial load.  

Fig. 10 indicates the dependence of fatigue life on the radial load and rotate speed. 

It can be obviously seen that when the PRSM with lower speed can have longer the 

fatigue life, especially the speed is less than 100rpm. In addition, the fatigue life 

significantly decreases with the increase of radial load. The main reason is why the 

maximum contact load remarkably increases with the growth of the radial load. The 

maximum contact stress can also be evidently increased and thereby the fatigue life can 

be visibly decreased. Therefore, during the design, installation and use of the PRSM, 

radial forces should be reduced as much as possible, which coincides with the proposed 

application of the SKF or ROLLVIS SWISS product catalog[19],[20]. 
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Fig. 9. Load distribution in different radial loads and configurations.  
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Fig. 10. Fatigue life in different radial loads, rotate speeds and configurations.  

 

3.2. Effects of machining errors 

In fact, the machining errors of the PRSM are inevitable and can be considered as 

a kind of random errors. Among the machining errors, the pitch deviation is the most 

influential on the mechanical performance[12]. Therefore, in this paper, the load 

capacity, fatigue life and deformation coefficient are mainly analyzed due to the effects 

of pitch errors. 



 

 

 

3.2.1 Effect of one thread with error 
Fig. 11 shows the load capacity against the thread number with 2μm and -2μm in 

4th thread of 1# roller. It’s obviously seen that when the error is negative in 4th thread, 

the contact force of the corresponding thread notably decreases, and those of the other 

threads slightly increase. In contrast, when the error of the 4th thread is positive, its 

contact force remarkably increases, and those of the remaining threads slightly decrease. 

This is mainly because that the positive error makes the axial clearance between thread 

couple smaller so that the contact deformation and contact load of the corresponding 

thread couple becomes bigger. On the contrary, the clearance is increased due to 

negative error and the contact deformation and contact force reduce. 
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Fig. 11. Load capacity with the errors of 2μm and -2μm in 4th thread of 1# roller  

 

3.2.2 Effects of all threads with errors 
In order to intuitively and accurately track the effects of machining errors, all 

threads have random ptich errors. The error curves are shown in Fig. 12, the error ranges 

are ±2μm and ±4μm, respectively. These errors are generated by the random function 

in MATLAB.  

Fig. 13 shows the variation of load capacity in the thread number under the 

different pitch errors and same external loads. As shown in Fig. 13, the errors have 

critical influences on the load capacity. It can be obviously seen that the load capacity 

curves of the PRSM with larger pitch errors fluctuate more severely. The main reason 

is why the bigger the pitch error, the greater or smaller the axial clearance, and the larger 

or smaller the contact deformation and contact force. Therefore, in the design process, 

the pitch errors should be minimized without interference.    

In order to deeply investigate the effects of machining errors, the deformation 

coefficient under the T-C state against the thread number and axial load under the 



 

 

different pitch errors and the same radial load of 1kN. As shown in Fig. 14, both the 

axial loads and pitch errors evidently change the deformation coefficient. Obviously, 

comparing the deformation coefficient of ±2μm with that of ±4μm for given axial loads, 

there is a larger fluctuation of deformation coefficient under ±4μm. This is mainly 

because that the larger the pitch errors, the bigger the variation of contact force and 

deformation. This is well confirmed by Fig. 13. In addition, with the growth of axial 

load, the deformation coefficient reduces rapidly at first and then slowly for ±4μm case. 

It can be observed that the deformation coefficient under the low axial load is more 

sensitive to machining errors than that under the large axial load. Therefore, the PRSM 

can properly reduce the machining accuracy under heavy loads. 

The fatigue life under the T-C state against machining errors shown in Fig. 15 and 

Fig. 16. Fig. 15 depicts the fatigue life against the axial load and accuracy under the 

same radial load of 1kN and the same feed rate of 300 rpm. As shown in Fig. 15, for 

given a specific accuracy, the PRSM with the lager axial load can possess a shorter 

lifetime than that of the PRSM with smaller axial load. This agrees well with Fig. 8(a). 

Furthermore, the fatigue life with a stable axial load has a clear downward trend with 

the reduction of the machining accuracy. This is mainly accounts for the lower the 

machining accuracy, the more uneven the distribution, and the maximum contact force 

increases as Fig. 13 illustrates. And then, Fig. 16 represents the variation of fatigue life 

in radial load and machining accuracy under the same axial load of 30kN and rotate 

speed of 300rpm. It can be interestingly noted that when the machining accuracy is 

stable, the fatigue life tends to remarkably decrease with the growth of radial load. This 

is consistent with Fig. 10. Furthermore, the change of fatigue life with radial force and 

machining accuracy is almost the same as that of the axial force.   

Table 3  

Roller’s pitch error with different accuracy (unit μm) 

Accuracy A0 A1 A2 A3 A4 A5 

Dimension error 0.5 1 2 3 4 5 
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Fig. 12. Random pitch errors of all roller threads 
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(a) T-C state 
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Fig. 13. Load distribution with random errors 

  

(a)1# roller with the pitch error of 2.0μm (b)3# roller with the pitch error of 2.0μm 



 

 

  

(c)1# roller with the pitch error of 4.0μm (d)3# roller with the pitch error of 4.0μm 

Fig. 14. Deformation coefficient in different pitch errors and axial loads 

  

Fig. 15. Fatigue life in different machining 

accuracy and axial loads 

Fig. 16. Fatigue life with machining accuracy 

and radial loads 

 

3.3. Effects of form correction of rollers 

 

From Section 3.2 we can find that when the threads have errors, the contact forces 

of the corresponding threads increase or decrease. Therefore, in order to achieve 

uniform load distribution and improve lifetime, the thread forms of rollers are modified. 

The modification is based on the load coefficient. According to Eq. (18), the recursive 

equation with corrections can be revised by: 
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  (36) 

where c is the modification factor.  

As shown in Fig. 17, it indicates that the amount of modification of roller thread 

under the T-C state is inversely proportional to the load coefficient. It can also be found 

that the greater the contact load, the larger the amount of modification. Furthermore, 



 

 

the correction curves of each roller are almost consistent under the same external load.  

Interesting, it can be found that the minimum Hertzian contact load increases and 

the maximum Hertzian contact load decreases after the modification displayed in Fig. 

18. This is due to the fact that the accumulative axial deformations can be compensated 

by the corrections. Compared with the four sets of modification, we can find that with 

the increase of correction, the uniformity of load capacity curve increases at first and 

then reduces evidently. In addition, the load capacity curves with 9κ corrections are 

more uniform than that of other corrections at specific load. As shown in Fig. 18(c), the 

maximum and minimum contact force of 1# roller with 9κ modification are 239.5N and 

235.5N, respectively; while those without modification are 291.1N and 211.1N, 

respectively. Consequently, the range of contact forces with modification is 95% lower 

than that without modification. However, as shown in Fig. 19, the load capacity curves 

of the PRSM shows 9κ correction is immoderate when the load is less than 30kN and 

is not enough when the load is more than 30kN. In addition, Fig. 20 indicates that the 

load capacity curves of the PRSM with correction is more uniform than that without 

correction in extensive range when the axial loads increase or reduce. Therefore, proper 

modification can effectively improve the load distribution of PRSM to a certain extent.  

Fig. 21 shows the variation of fatigue life against the correction under the same 

external load and rotate speed. In this part, the PRSM is assumed that under the 

following condition: the axial load Fa = 30kN, and the radial load Fr = 3kN, and rotate 

speed ꞷs = 100rpm, and change the corrections from 0κ to 12κ. It can be seen that the 

fatigue life of the PRSM increases at first and then decreases with the growth of 

corrections. Hence, the proper correction is an effective way to increase the fatigue life. 
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Fig. 17. Correction curves with different modification factors. 
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(a) 3κ correction (b) 6κ correction 
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(c) 9κ correction (d) 12κ correction 

Fig. 18. Load capacity in different corrections 
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Fig. 19. Load capacity of 9κ correction in different axial loads 
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Fig. 20. Load capacity of 9κ correction in different axial loads and same radial load of 3kN 
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Fig. 21. Fatigue life in different corrections 

 

4. Conclusions 
In this paper, the proposed model for investigating the load capacity, deformation 

coefficient and fatigue life of the PRSM is performed. This model considering radial 

load makes use of the equivalent method for axial force estimation of individual rollers. 

Moreover, the effects of radial loads, axial loads, configurations, machining errors or 

corrections are taken into consideration. In order to verify the validity and accuracy of 

the proposed model, lots of analysis results are done, and the following conclusions can 

be obtained: 

(1) when the PRSM is applied with axial load and radial load, the load capacity of the 

PRSM changes periodically. As the axial loads increase, the contact forces and the 

non-uniformity of load capacity increase, resulting in the lifetime decreasing. In 

addition, with the growth of radial loads, the load distribution curves oscillate 

intensely and the fatigue life decreases sharply. Therefore, during the design, 

installation and use of the PRSM, radial forces should be reduced as much as 



 

 

possible. 

(2) The configurations affect load capacity and fatigue life. Comparing the T-T with 

the T-C state, the contact force slightly become uniform and the fatigue life slightly 

increases. 

(3) The machining errors have great influences on load capacity, deformation and 

fatigue life. As the error of a thread is negative, the corresponding thread contact 

force decrease, but the rest increase. In contrast, the positive error makes contact 

load of the corresponding thread increase, while the others decrease. Moreover, the 

deformation coefficient varies dramatically with increasing errors, and decreases 

rapidly at first and then slowly through increase of axial load. Hence, the load 

distribution of large axial load isn’t particularly sensitive to the effect of machining 

accuracy. Furthermore, for given an external load, the fatigue life of PRSM has a 

decrease trend with the decrease of machining accuracy.   

(4) The minimum Hertzian contact load remarkably increases and the maximum 

Hertzian contact load significantly decreases after the roller threads are corrected. 

Comparing the modified PRSM with the PRSM without modification, the contact 

forces over threads becomes more even and the fatigue life of PRSM is notably 

improved. 
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